64 research outputs found

    Duality Between Smooth Min- and Max-Entropies

    Full text link
    In classical and quantum information theory, operational quantities such as the amount of randomness that can be extracted from a given source or the amount of space needed to store given data are normally characterized by one of two entropy measures, called smooth min-entropy and smooth max-entropy, respectively. While both entropies are equal to the von Neumann entropy in certain special cases (e.g., asymptotically, for many independent repetitions of the given data), their values can differ arbitrarily in the general case. In this work, a recently discovered duality relation between (non-smooth) min- and max-entropies is extended to the smooth case. More precisely, it is shown that the smooth min-entropy of a system A conditioned on a system B equals the negative of the smooth max-entropy of A conditioned on a purifying system C. This result immediately implies that certain operational quantities (such as the amount of compression and the amount of randomness that can be extracted from given data) are related. Such relations may, for example, have applications in cryptographic security proofs

    A Fully Quantum Asymptotic Equipartition Property

    Full text link
    The classical asymptotic equipartition property is the statement that, in the limit of a large number of identical repetitions of a random experiment, the output sequence is virtually certain to come from the typical set, each member of which is almost equally likely. In this paper, we prove a fully quantum generalization of this property, where both the output of the experiment and side information are quantum. We give an explicit bound on the convergence, which is independent of the dimensionality of the side information. This naturally leads to a family of Renyi-like quantum conditional entropies, for which the von Neumann entropy emerges as a special case.Comment: Main claim is updated with improved bound

    Toward correlation self-testing of quantum theory in the adaptive Clauser-Horne-Shimony-Holt game

    Get PDF
    Correlation self-testing of a theory addresses the question of whether we can identify the set of correlations realisable in a theory from its performance in a particular information processing task. Applied to quantum theory it aims to identify an information processing task whose optimal performance is achieved only by theories realising the same correlations as quantum theory in any causal structure. In [Phys. Rev. Lett. 125 060406 (2020)] we introduced a candidate task for this, the adaptive CHSH game. Here, we analyse the maximum probability of winning this game in different generalised probabilistic theories. We show that theories with a joint state space given by the minimal or the maximal tensor product are inferior to quantum theory, before considering other tensor products in theories whose elementary systems have various two-dimensional state spaces. For these, we find no theories that outperform quantum theory in the adaptive CHSH game and prove that it is impossible to recover the quantum performance in various cases. This is the first step towards a general solution that, if successful, will have wide-ranging consequences, in particular, enabling an experiment that could rule out all theories in which the set of realisable correlations does not coincide with the quantum set.Comment: 12+2 pages, 2 figures; v2: typos correcte

    Analysing causal structures in generalised probabilistic theories

    Get PDF
    Causal structures give us a way to understand the origin of observed correlations. These were developed for classical scenarios, but quantum mechanical experiments necessitate their generalisation. Here we study causal structures in a broad range of theories, which include both quantum and classical theory as special cases. We propose a method for analysing differences between such theories based on the so-called measurement entropy. We apply this method to several causal structures, deriving new relations that separate classical, quantum and more general theories within these causal structures. The constraints we derive for the most general theories are in a sense minimal requirements of any causal explanation in these scenarios. In addition, we make several technical contributions that give insight for the entropic analysis of quantum causal structures. In particular, we prove that for any causal structure and for any generalised probabilistic theory, the set of achievable entropy vectors form a convex cone.Comment: 11+13 pages, 5 figures, v2: new examples and additional discussion added, v3 (published version): presentation improve
    • …
    corecore